当前位置:首页 > 教学教案

初中数学 最简二次根式 教学设计示例5 教案

时间:2022-10-01 11:03:17 作者:李瑞文 字数:3296字

一、 教学过程

【复习提问】

1.分式的基本性质?

2.分式的变号法则?

【新课】

数学 小笑话:(配上漫画插图幻灯片)

从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”

问:这个富家子弟为什么会犯这样的错误?

分数约分的方法及依据是什么?

1.提出课题:分式可不可以约分?根据什么?怎样约分?约到何时为止?

学生分组讨论,最终达成共识.

2.教师小结:

(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.

(2)分式约分的依据:分式的基本性质.

(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.

(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.

3.例题与练习:

例1 约分:

(1) ;

请学生观察思考:①有没有公因式?②公因式是什么?

解: .

小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.

(2) ;

请学生分析如何约分.

解: .

小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②注意对分子、分母符号的处理.

(3) ;

解:原式 .

(4) ;

解:原式


(5) ;

解:原式 .

例2  化简求值:

.其中 , .

分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算提供了便利条件.

解:原式 .

当 , 时.

二、随堂练习

教材P65练习1、2.

三、总结、扩展

1.约分的依据是分式的基本性质.

2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.

3.若分式的分子、分母中有多项式,则要先分解因式,再约分.

四、布置作业

教材P73中2、3.

补充思考讨论题:

1.将下列各式约分:

(1) ;(2) ;

(3)

2.已知 ,则

五、 板书设计