1、教材分析
(1)知识结构
(2)重点、难点分析
重点:①确定圆的定理.它是圆中的基础知识,是确定圆的理论依据;②不在同一直线上的三点作圆.“作圆”不仅体现在证明“确定圆的定理”的重要作用,也是解决实际问题中常用的方法;③反证法证明命题的一般步骤.反证法虽是选学内容,但它是证明数学命题的重要的基本方法之一.
难点:反证法不是直接以题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明原命题正确,又因为矛盾的多样化,学生刚刚接触,所以反证法不仅是本节的难点,也是本章的难点.
2、 教学 建议
本节内容需要两个课时.在第一课时过三点的圆的 教学 中:
(1)把课堂活动设计的重点放在如何调动学生的主体和发现问题、解决问题的能力上.让学生作图、观察、分析、概括出定理.
(2)组织学生开展“找直角、锐角和钝角三角形的外心”的位置活动,在激发学生的学习兴趣中,提高作图能力.
(3)在 教学 中,解决过已知点作圆的问题,应紧紧抓住对圆心和半径的探讨,已知圆心和半径就可以作一个圆,这是从圆的定义引出的基本思路,因此作圆的问题就是如何根据已知条件去找圆心和半径的问题.由于作圆要经过已知点,如果圆心的位置确定了,圆的半径也就随之确定,因此作圆的问题又变成了找圆心的问题,是否可以作圆以及能作多少个圆,都取决于能否确定圆心的位置和圆心的个数.
在第二课时反证法的 教学 中:
(1)对于A层的学生尽量使学生理解并会简单应用,对B层的学生使学生了解即可.
(2)在 教学 中老师要精讲:①为什么要用反证法;②反证法的基本步骤;③精讲精练.
第 1 2 3 页