首页
作文大全
职场范文
古诗名句
教学教案
阅读理解
题库文档
当前位置:
首页
>
教学教案
初中数学 数据的收集与整理 教案
时间:2022-10-07 11:03:48
作者:学习啦
字数:7740字
[课 题]
§
6.1
正弦和余弦(
1
)
[教学目的] 使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一条边或一个锐角),求这个直角三角形的其他元素(直角除外);使学生了解下列事实:在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。[教学重点] 已知直角三角形的一条边和另一个元素(一条边或一个锐角),求这个直角三角形的其他元素。[教学难点] 在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。[教学关键] 在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。。[教学用具] 三角板、小黑板。[教学形式] 讲练结合法。[教学用时] 45′×1
[
教学过程
]
[
复习提问
]
1、什么叫做直角三角形?2、如果直角三角形△ABC中,∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可以用什么符号来表示?3、对于一个直角三角形来说,除了一个内角是直角外,还有两个内角是锐角,有三条边,在这除了直角以外的5个“元素”中,已知几个“元素”,通过什么可以求出未知的其他“元素”?
[
讲解新课
]
一、让学生阅读教科书第1页上的插图和引例(时间3分钟),然后提问:1、这个有关测量的实际问题有什么特点?(有一个重要的测量点不可到达。)2、把这个实际问题化为数学模型后,其图形是什么图形?(直角三角形。)3、能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。)4、想想看,除了测量、作图或画图等方法外,我们还学过哪些方法?(计算与证明。)5、这个实际问题可以归结为怎样一个数学问题?(在Rt△ABC中,∠C为直角,已知锐角A和斜边AB,求∠A的对边BC。)这时指出,由于∠A不一定是特殊角,我们难以运用学过的定理来证明BC的长度。因此在下面考虑能不能通过式子变形和计算来求得BC的值。这就是我们在这一章中要学习的一项新知识。二、让学生阅读教科书第2页至第3页第3行的内容,要求一边阅读,一边观察自己随身携带的两块三角板(时间5分钟),然后提问:1、(出示自己带来的教具之一——不等腰的那把本制三角板)在这把三角板中,30°角所对的直角边与斜边之间有什么关系?(30°角所对的直角边等于斜边的一半。)你们的三角板中,这个结论是不是也都成立?
45°
30°
B
B
2、(用小黑板出示图6—1(1),我们把这个结论化为数学式子,可以得到什么?( = = 。)
C
C
A
A
3、这就是说,当∠A=30°时,不管直角三角形的大小如何,∠A的 图6—1(1) 图6—1(2)对边与斜边的比值都等于 。那么,根据这个比值 ,如果已知斜边AB的长,怎样算出∠A的对边BC的长呢?(BC= AB。)4、(出示自己带来的另一教具——等腰的那把本制三角板和小黑板上的图6—1(2),类似地,运用勾股定理,在所有等腰的那块三角板中,我们可以发现什么?( = = = = 。)5、这就是说,当∠A=45°时,不管直角三角形的大小如何,∠A的对边与斜边的比值都等于 。那么,根据这个比值 ,如果已知斜边AB的长,怎样算出∠A的对边BC的长呢?(BC= AB。)三、那么,当锐角A取其他固定值时,∠A的对边与斜边的比值能否也是一个固定值呢?为了回答这一问题,请同学们阅读教科书第3页第3行下面的内容(时间4分钟),然后提问:1、在直角三角形中,如果有一个锐角取固定值,而夹这个锐角的一条直角边和斜边的长都可以变化,那么,当我们把有这样特殊点的直角三角形中取固定值的锐角叠合在一起,并把夹这个锐角的直角边重合在一条直线上时,斜边会出现什么情况?(斜边也会重合在一条直线上。)2、(出示小黑板上的图6—2),Rt△AB
1
C
1
、Rt△AB
2
C
2
、Rt△AB
3
C
3
、……之间有什么关系?(彼此相似。)为什么?(它们有公共的锐角A。)
B
3
B
2
3、那么, 、 、 这些比值之间有什么关系?(彼此相等。)为什么?(相似三角形中对应边的比相等。)
B
1
4、由此可得什么结论?(在直角三角形中,当一个锐角取固定值时,它的对边与斜边的比也取一个固定值。)
C
3
C
2
C
1
A
[
课堂练习
]
在△ABC中,∠C为直角。 图6—21、如果∠A=60°,那么∠B的对边与斜边的比值是多少?2、如果∠A=60°,那么∠A的对边与斜边的比值是多少?3、如果∠A=30°,那么∠B的对边与斜边的比值是多少?4、如果∠A=45°,那么∠B的对边与斜边的比值是多少?
[
课堂小结
]
在这一节课中,我们获得了一个重要的结论:在直角三角形中,当一个锐角(∠A)取固定值时,它的对边与斜边的比值( )也是一个固定值,如果后者(即 )能够由前者(即∠A)求出,那么引例中的实际问题(求BC的长)就可以解决了。所以,从下节课起,我们将进一步研究这类比值(即 等)的特点,从而得以求出它们。
[
课外作业
]
复习教科书第1~3页上的全部内容。
[
板书设计
]
课题:一、1、2、3、4、5、
二1、2、3、4、5、
三、1、2、3、4、
课堂练习
[
课后记
]
通过本节课内容的学习,我们对直角三角形又有了一个新的认识,即:当直角三角形中,有一锐角固定时,其对边与斜边的比值也是固定的这一重要性质。这在我们今后的学习中是十分重要的。
直角
斜边
角形
初中数学数据的收集与整理教案
发表看法
相关文章推荐
初中数学-八年级数学教案数学教案-四边形教学设计示例2
初中数学-八年级数学教案数学教案-正方形启发式教学示例
初中数学-八年级数学教案数学教案-平行四边形的判定(第一课时)
初中数学-八年级数学教案数学教案-相似三角形的性质
初中数学-八年级数学教案数学教案-等腰三角形的判定
初中数学-八年级数学教案数学教案-直角三角形全等的判定
初中数学-八年级数学教案数学教案-三角形全等的判定3
初中数学-八年级数学教案数学教案-线段的垂直平分线
初中数学-八年级数学教案数学教案-分式的基本性质
初中数学-八年级数学教案数学教案-最简二次根式教学设计示例3
上一篇:
初中数学 解直角三角形 教案
下一篇:
返回列表
最新文章
1
初中数学 数据的收集与整理 教案
2
初中数学 解直角三角形 教案
3
初中数学 正多边形的有关计算 教案
4
初中数学 用计算器求平均数、标准差与方差 教案
5
初中数学 数学教案-一次函数 教案
6
初中数学 第六册两圆的位置关系 教案
7
初中数学 一元二次方程的根与系数的关系(一) 教案
8
初中数学 第六册函数的图象 教案
9
初中数学 二元一次方程与一次函数 教案
10
初中数学 相切在作图中的应用 教案
11
初中数学 二次函数y=ax2的图象 教案
12
初中数学 数学教案-梯形的中位线 教案
13
初中数学 数学教案-圆、扇形、弓形的面积 教案
14
初中数学 二次三项式的因式分解(用公式法) 教案
15
初中数学 由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组 教案
16
初中数学 可化为一元二次方程的分式方程 教案
17
初中数学 第三册确定一次函数的表达式 教案
18
初中数学 函数的图象 教案
19
初中数学 数学教案-菱形教学示例 第二课时 教案
20
初中数学 数学教案-全等三角形 教案
猜你喜欢
初中数学 三角形全等的判定2 教案
初中数学 分式方程的应用 教案
初中数学 数学教案-列一元二次方程解应用题 教案
初中数学 数学教案-比例线段 (第2课时) 教案
初中数学 数学教案-平方根 教案
初中数学 数学教案-平行线分线段成比例定理 (第二课时) 教案
初中数学 数学教案-矩形 教案
初中数学 数学教案-[模拟实验]说课稿 教案
初中数学 数学教案-勾股定理 教案
初中数学 数学 教案
初中数学 矩形 教学示例二 教案
初中数学 数学教案-线段的垂直平分线 教案
初中数学 数学教案-三角形的中位线 教案
初中数学 数学教案-一元二次方程根与系数关系 教案
初中数学 数学教案-平行四边形的判定 (第一课时) 教案
初中数学 正方形 探索式教学示例 教案
初中数学 数学教案-三角形相似的判定 (第2课时) 教案
初中数学 第三册一元二次方程的解法 教案
初中数学 数学教案-正方形 启发式教学示例 教案
初中数学 数学教案-相似三角形的性质 教案