当前位置:首页 > 教学教案

初中数学 直角三角形全等的判定 教案

时间:2022-10-03 11:01:24 作者:豆丁文库尔 字数:3963字

一、 教学目标

1.使学生理解并掌握分式的概念,了解有理式的概念;

2.使学生能够求出分式有意义的条件;

3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;

4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.

二、重点、难点、疑点及解决办法

1. 教学重点 和难点    明确分式的分母不为零.

2.疑点及解决办法    通过类比分数的意义,加强对分式意义的理解.

三、 教学过程

【新课引入】

前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)

【新课】

1.分式的定义

(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

(2)由学生举几个分式的例子.

(3)学生小结分式的概念中应注意的问题.

①分母中含有字母.

②如同分数一样,分式的分母不能为零.

(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]

2.有理式的分类

请学生类比有理数的分类为有理式分类:

例1  当取何值时,下列分式有意义?

(1);

解:由分母得.

∴当时,原分式有意义.

(2);

解:由分母得.

∴当时,原分式有意义.

(3);

解:∵恒成立,

∴取一切实数时,原分式都有意义.

(4).

解:由分母得.

∴当且时,原分式有意义.

思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?

例2  当取何值时,下列分式的值为零?

(1);

解:由分子得.

而当时,分母.

∴当时,原分式值为零.

小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.

(2);

解:由分子得.

而当时,分母,分式无意义.

当时,分母.

∴当时,原分式值为零.

(3);

解:由分子得.

而当时,分母.

当时,分母.

∴当或时,原分式值都为零.

(4).

解:由分子得.

而当时,,分式无意义.

∴没有使原分式的值为零的的值,即原分式值不可能为零.

(四)总结、扩展

1.分式与分数的区别.

2.分式何时有意义?

3.分式何时值为零?

(五)随堂练习

1.填空题:

(1)当时,分式的值为零

(2)当时,分式的值为零

(3)当时,分式的值为零

2.教材P55中1、2、3.

八、布置作业

教材P56中A组3、4;B组(1)、(2)、(3).

九、 板书设计

课题           例1

1.定义          例2

2.有理式分类